TruFocus LIO Premiere™
Oftalmoscopio indirecto para láser
Manual del usuario

IRIDEX
1 Introducción

Usos clínicos del LIO
Indicaciones de uso
Contraindicaciones
Factores que afectan al tamaño de punto
Advertencias y precauciones
Información de contacto de IRIDEX Corporation

2 Uso

Consideraciones especiales
Embalaje y desembalaje del LIO
Acerca de los componentes
Instalación de la batería recargable en el casco
Configuración y uso de la batería recargable montada en el casco y la base de pared
Configuración previa a la intervención
Instrucciones para tratar a un paciente
Instrucciones para el modo BIO

3 Solución de problemas

Problemas generales

4 Mantenimiento

Inspección del LIO
Limpieza del conector de fibra óptica
Limpieza de las superficies externas
Limpieza de los componentes ópticos
Sustitución y limpieza de la batería recargable montada en el casco
Carga de la batería recargable montada en el casco
Sustitución de la lámpara de iluminación halógena o LED

5 Servicio técnico

6 Seguridad y conformidad

Protección del facultativo
Protección de todo el personal de la sala de tratamiento
Conformidad de seguridad
Etiquetas
Símbolos (según corresponda)
Especificaciones del TruFocus LIO Premiere
Información de seguridad sobre compatibilidad electromagnética
1
Introducción

El oftalmoscopio indirecto para láser TruFocus LIO Premiere™ de IRIDEX, conectado a la familia de láseres IRIDEX, agrega la capacidad terapéutica de fotocoagulación transpupilar en la retina a la amplia variedad de funciones diagnósticas del gran angular de un oftalmoscopio indirecto binocular. Permite aplicar energía láser en la periferia más alejada de la retina y tratar a pacientes en decúbito supino. Los filtros de seguridad oculares integrados protegen sus ojos a la vez que proporcionan una visión clara de la zona a tratar. El montaje totalmente aislado de los elementos ópticos evita problemas de alineación y contaminación.

El TruFocus LIO Premiere solo se vende a médicos y debe ser utilizado por profesionales médicos debidamente cualificados y habituados al uso del dispositivo y a las intervenciones que se realizan con él.

El LIO es apto para su uso en pacientes de todas las edades.

Usos clínicos del LIO

El LIO se utiliza de manera generalizada para tratar la retinopatía diabética proliferativa, la retinopatía del prematuro, los desgarros y desprendimientos de retina y los tumores intraoculares, como el retinoblastoma.

Indicaciones de uso

El oftalmoscopio indirecto para láser TruFocus LIO Premiere de IRIDEX se emplea junto con la familia de sistemas láser IRIDEX® IQ (IQ 532 [532 nm], IQ 577 [577 nm], IQ 630-670 [630 nm - 670 nm], IQ 810 [810 nm]), piezas de mano, dispositivos de emisión y accesorios correspondientes para administrar energía láser en modo CW-Pulse, MicroPulse® o LongPulse™. Está indicado para uso en tejidos blandos y fibrosos, incluida la incisión de tejido óseo, la escisión, la coagulación, la vaporización, la ablación de tejidos y la hemostasia vascular en las especialidades de dermatología, otorrinolaringología (ORL) y oftalmología en los siguientes casos:

532 nm:

Dermatología:
- Lesiones cutáneas pigmentadas
- Lesiones vasculares

Oído, nariz y garganta/otorrinolaringología (ORL):

Pérdida auditiva por otoesclerosis o enfermedades del oído interno:
- Estapedectomía
- Estapedotomía
- Miringotomías
- Lisis de adherencias
- Control del sangrado
- Extirpación de neurinomas del acústico
- Adherencias de tejido blando en intervenciones micro/macrotológicas
Oftalmología:

Indicado para fotocoagulación de la retina, trabeculoplastia con láser, iridotomía, iridoplastia, incluidas las siguientes:

- Fotocoagulación retiniana (FCR) para el tratamiento de
 - Retinopatía diabética, incluyendo:
 - Retinopatía no proliferativa
 - Edema macular
 - Retinopatía proliferativa
- Desgarros y desprendimiento de retina
 - Degeneración reticular
 - Degeneración macular asociada a la edad (DMAE)
 - Retinopatía del prematuro
 - Neovascularización (coroidea) subretiniana
 - Oclusión de rama venosa retiniana y de la vena central de la retina
- Trabeculoplastia con láser, iridotomía, iridoplastia para el tratamiento del glaucoma, incluido
 - Glaucoma primario de ángulo abierto/de ángulo cerrado

577 nm

Dermatología:

- Tratamiento de lesiones vasculares y pigmentadas

Oftalmología:

Indicado para la fotocoagulación de los segmentos anterior y posterior, incluyendo:

- Fotocoagulación de la retina, fotocoagulación panretiniana y endofotocoagulación intravitrea de anomalías vasculares y estructurales en la retina y la coroides, incluyendo:
 - Retinopatía diabética proliferativa y no proliferativa
 - Neovascularización coroidea
 - Oclusión de rama venosa retiniana
 - Degeneración macular asociada a la edad
 - Desgarros y desprendimiento de retina
 - Retinopatía del prematuro
- Iridotomía, iridectomía y trabeculoplastia en glaucoma de ángulo abierto y glaucoma de ángulo cerrado
630-670 nm

Oftalmología:

Indicado para la fotocoagulación de los segmentos anterior y posterior, incluyendo:

- Fotocoagulación de la retina, fotocoagulación panretiniana y endofotocoagulación intravítre de anomalías vasculares y estructurales en la retina y la coroides, incluyendo:
 - Retinopatía diabética proliferativa y no proliferativa
 - Neovascularización coroidea
 - Oclusión de rama venosa retiniana
 - Degeneración macular asociada a la edad
 - Desgarros y desprendimiento de retina
 - Retinopatía del prematuro
- Iridotomía, iridectomía y trabeculoplastia en glaucoma de ángulo abierto y glaucoma de ángulo cerrado

810 nm

Oftalmología:

Indicado para la fotocoagulación de la retina, trabeculoplastia láser, ciclofotocoagulación transescleral, fotocoagulación transescleral de la retina e iridotomía, incluidos los ejemplos siguientes:

- Fotocoagulación retiniana para el tratamiento de:
 - Retinopatía diabética, incluyendo:
 - Retinopatía no proliferativa
 - Edema macular
 - Retinopatía proliferativa
 - Desgarros, desprendimiento y perforación de retina
 - Degeneración reticular
 - Degeneración macular asociada a la edad (DMAE) con neovascularización coroidea (NVC)
 - Retinopatía del prematuro
 - Neovascularización (coroidea) subretiniana
 - Oclusión de rama venosa retiniana y de la vena central de la retina
 - Trabeculoplastia con láser, iridotomía, ciclofotocoagulación transescleral (CFCTE) para el tratamiento del glaucoma, incluyendo:
 - Glaucoma primario de ángulo abierto
 - Glaucoma primario de ángulo cerrado
 - Glaucoma refractario (recalcitrante/no controlado)

Contraindicaciones

El TruFocus LIO Premiere no está indicado para los casos que requieren fotocoagulación por láser dentro de las arcadas vasculares. No se debe tratar a los pacientes albinos que no tengan pigmentación.
Factores que afectan al tamaño de punto

- El índice de refracción de los medios oculares.
- La distancia de trabajo. El tamaño más pequeño se obtiene cuando el punto del láser está enfocado en el plano de la imagen.
- El estado de refracción del ojo. El tamaño de punto del láser en la retina es más pequeño en los ojos miopes y más grande en los hipermetrópes.

A \times \left(\frac{B}{C} \right) = \text{tamaño de punto en la retina donde:}

- A = tamaño de punto en el aire
- B = potencia de la lente asférica de mano, en dioptrías
- C = potencia del ojo

Utilizando la fórmula*:

- Ojo emé trope (60 D): 1100 µm \times \left(\frac{20}{60} \right) = \text{tamaño de punto de 360 µm en la retina}
- Ojo miope (70 D): 1100 µm \times \left(\frac{20}{70} \right) = \text{tamaño de punto de 315 µm en la retina}
- Ojo hipermetrópe (50 D): 1100 µm \times \left(\frac{20}{50} \right) = \text{tamaño de punto de 440 µm en la retina}

*Solo como ejemplo; la potencia puede variar según el paciente.

Si se sitúa la lente asférica de 20 D a 55 mm de un ojo emé trope, debe producirse una imagen aérea ampliada del fondo del ojo.

Advertencias y precauciones

ADVERTENCIAS:

Los sistemas de láser generan un haz de luz muy concentrado que puede provocar lesiones si se utiliza indebidamente. Para proteger al paciente y al personal quirúrgico, es necesario leer detenidamente y comprender los manuales del usuario del láser y del sistema de emisión correspondiente antes de usarlo.

Selección con la máxima atención la sala de tratamiento y la ubicación. Las zonas de tratamiento no deben tener ventanas sin cubrir ni superficies reflectantes que puedan reflejar de manera accidental el haz de tratamiento.

Nunca mire directamente a las aperturas del haz de referencia o de tratamiento ni a los cables de fibra óptica que emiten los haces de láser, sin importar que lleve o no protección ocular de seguridad.

Nunca mire directamente a la fuente de luz láser ni a la luz láser dispersada por superficies muy reflectantes. Evite dirigir el haz de tratamiento hacia superficies altamente reflectantes (p. ej., instrumentos metálicos).

Compruebe que todo el personal que se encuentre en la sala de tratamiento lleve puesta protección ocular adecuada para luz láser. No utilice nunca gafas graduadas como protección ocular para láser.

Examine siempre el cable de fibra óptica antes de conectarlo al láser, para asegurarse de que no haya sufrido daño alguno. Si el cable de fibra óptica está dañado, podría causar una exposición accidental a la luz láser o lesiones al operador, al paciente u otras personas que se encuentren en la sala de tratamiento.

Compruebe siempre que el dispositivo de emisión esté conectado correctamente al láser. Una conexión inadecuada puede dar lugar accidentalmente a un haz de láser secundario. Este podría causar graves lesiones en los ojos o los tejidos.
No utilice el dispositivo de emisión con ningún sistema de láser que no sea compatible con IRIDEX. Si lo hace, anulará las garantías del producto y pondrá en peligro la seguridad del paciente, la suya propia y la de otras personas presentes en la sala de tratamiento.

PRECAUCIONES:

La ley federal de Estados Unidos limita la venta de este dispositivo por parte de médicos o por prescripción de un médico licenciado por las leyes del estado en el que ejerce la medicina para utilizar o prescribir el uso del dispositivo.

El uso de controles o ajustes o la realización de intervenciones distintas a las descritas en este manual puede dar lugar a una exposición peligrosa a la radiación.

No utilice el equipo en presencia de sustancias inflamables o explosivas, tales como anestésicos volátiles, alcohol o soluciones de preparación para cirugía.

Apague el láser antes de inspeccionar cualquier componente del dispositivo de emisión.

Tenga siempre mucho cuidado al manipular los cables de fibra óptica. No doble, acode ni enrolle el cable con un diámetro inferior a 15 cm (6 in).

Mantenga el tapón de protección en el conector de fibra óptica mientras no utilice el dispositivo de emisión.

Información de contacto de IRIDEX Corporation

IRIDEX Corporation
1212 Terra Bella Avenue
Mountain View, California 94043-1824 (EE. UU.)
Teléfono: +1 (650) 940-4700
(800) 388-4747 (solo EE. UU.)
Fax: +1 (650) 962-0486
Servicio técnico: +1 (650) 962-8100
techsupport@iridex.com

Emergo Europe
Prinsessegracht 20
2514 AP La Haya
Países Bajos

Garantía y servicio técnico. Este dispositivo se suministra con una garantía de fábrica estándar. La garantía queda anulada si una persona que no pertenezca al personal certificado del servicio técnico de IRIDEX intenta efectuar tareas de servicio.

NOTA: Esta declaración de servicio y garantía está sujeta a la exención de garantías, limitación de recursos disponibles y limitación de responsabilidad incluidas en los Términos y condiciones de IRIDEX.

Si necesita asistencia, póngase en contacto con su representante local de servicio técnico de IRIDEX o con las oficinas centrales de la compañía.

Directiva sobre RAEE.

El equipo y los accesorios deberán desecharse de conformidad con la normativa local y regional aplicable.

Comuníquese con IRIDEX o con su distribuidor para obtener información sobre la forma de desechar el producto.
2
Uso

Consideraciones especiales

El oftalmoscopio indirecto para láser (LIO) TruFocus Premiere es un oftalmoscopio indirecto binocular (BIO) Heine 500 con la adición de emisión de láser para aplicaciones ópticas. En este sistema hay dos espejos posicionados fuera del eje respecto a la óptica de visión (véase la Figura 1 más abajo).

Figura 1. Óptica del TruFocus LIO Premiere

El espejo de iluminación está encima del plano de visión, mientras que el haz de referencia y el espejo del haz del tratamiento láser se colocan debajo del eje de visión. A diferencia de los sistemas ópticos LIO con espejo único, donde el haz de iluminación y los de referencia/tratamiento son coaxiales, parfocales y se posicionan juntos con un único ajuste vertical para manipularse como un solo elemento, el TruFocus LIO Premiere tiene dos espejos de control independientes (véase la Figura 2 más abajo), uno para el haz de iluminación y el otro para los haces de referencia y tratamiento.

Figura 2. Controles de ajuste

Con el uso de una lente condensadora, el campo de iluminación y los haces de referencia/tratamiento tienden a separarse en puntos distales a la lente, pero se pueden ajustar para que sean concéntricos con el uso del mecanismo de control vertical del haz del láser descrito anteriormente.
NOTA: Es normal que ocurran reflejos del haz de referencia rojo en varias superficies del camino óptico. No obstante, es una buena práctica minimizar la inclinación de la lente condensadora para así mitigar los reflejos del haz de referencia en las diversas superficies ópticas, manteniendo la lente condensadora paralela al plano de la pupila, verificando que todas las superficies ópticas estén limpias y no presenten huellas digitales y asegurando que la superficie más convexa de la lente condensadora esté orientada hacia el clínico.

Embalseaje y desembalseaje del LIO

Consulte las instrucciones de uso de Heine 500 que encontrará en el maletín de transporte del LIO si necesita indicaciones sobre cómo embalar y desembalar correctamente el LIO de dicho maletín.

Acerca de los componentes

Compruebe que haya recibido todos los componentes del paquete del TruFocus LIO Premiere y verifique con cuidado su integridad antes de usarlos para asegurarse de que no hayan sufrido daños durante el transporte. Además de este manual, deberá haber recibido el TruFocus LIO Premiere, las lentes de cero dioptrías y una base de recarga para la pared con batería o un transformador con toma eléctrica y batería. Si encuentra algún problema, póngase en contacto con un representante local del servicio técnico de IRIDEX.

El aspecto y el tipo de componentes del sistema pueden variar en función del dispositivo de emisión solicitado.
Junto con el TruFocus LIO Premiere se suministra un par de lentes de cero dioptrías. Si lo desea, puede cambiar estas lentes por las lentes de dos dioptrías que se suministran ya montadas en los oculares del binocular.

Instalación de la batería recargable en el casco

Para más información sobre cómo instalar la batería recargable montada en el casco, consulte las instrucciones de Heine que se incluyen con la unidad.

NOTA: *Antes de utilizar el sistema, compruebe que la batería está cargada al máximo.*

Configuración y uso de la batería recargable montada en el casco y la base de pared

El número de LED iluminados en la batería indica el nivel de carga. Se considera que puede contar con un periodo de funcionamiento completo si hay al menos 4 LED iluminados. Si un LED parpadea, recargue la batería o cámbiela por otra que esté cargada. Cuando se apaguen todos los LED, significa que la batería está sin carga.

Para más información, consulte las instrucciones que se incluyen con la batería recargable y la base de carga y asegúrese de respetar todas las directrices y precauciones.
Configuración previa a la intervención

NOTA: Comience realizando todos los ajustes necesarios para lograr una posición central o media, lejos de los extremos de su rango de ajuste. Consulte el manual del Omega-500 de Heine para obtener más detalles.

1. Lleve la palanca de rango dinámico, situada en la parte inferior, de la unidad óptica a la posición central.

2. Seleccione un punto de iluminación intermedio utilizando la palanca de control de la apertura.

3. Seleccione el ajuste de filtro deseado utilizando la palanca de control del filtro.

4. Coloque el casco en la cabeza; ajuste las presillas superior y trasera del casco para acomodarlo al paciente.

5. Con el tornillo de mariposa ajuste y fije la posición (arriba/abajo y adelante/atrás) de las rendijas de visión del conjunto LIO.

6. Ajuste la distancia pupilar (DP) entre los oculares para fusionar la imagen. Al mirar por ambos oculares, el usuario debe poder leer cómodamente el texto impreso sostenido a la distancia del plano retiniano de la imagen o cercana (aprox. 370-430 mm o 14,6-16,9 pulgadas desde el casco).

 Ajuste y afine la DP cerrando primero un ojo y luego el otro y observando un objeto en mitad del punto de iluminación mientras regula el ocular correspondiente.
 Repita el proceso hasta que el objeto quede en mitad del campo visual y se obtenga una imagen única. Retire el instrumento y compruebe que la DP está ajustada simétricamente. En caso contrario, repita el proceso de selección. El ajuste correcto de la DP reviste especial importancia para el examen a través de una pupila pequeña.
7. Ajuste al tamaño de la pupila del paciente moviendo la palanca de rango dinámico, situada en la parte inferior de la unidad.
Gire para ajustar al tamaño grande (normal) o pequeño de la pupila del paciente.

8. Encienda la iluminación y ajustela a una intensidad de visión adecuada.
A fin de generar suficiente iluminación en la zona de tratamiento, ajuste el brillo girando el botón de control correspondiente, que se encuentra en el casco del LIO. Evite aplicar un brillo mayor del necesario para ver correctamente la zona de tratamiento.

9. Conecte el cable de fibra de LIO a una consola de láser compatible con la longitud de onda correcta para el tratamiento. Encienda el «haz de referencia» y ajuste la intensidad en el panel de control del láser.

Conexión del cable de fibra óptica a la familia de consolas láser OcuLight
Conexión del cable de fibra óptica a la familia de consolas láser IQ. Conecte al puerto 1 o al puerto 2
Instrucciones para tratar a un paciente

ANTES DE TRATAR A UN PACIENTE:

- Inspeccione el LIO antes de utilizarlo y compruebe que se encuentra en buen estado. Antes de iniciar el tratamiento, compruebe que el haz de referencia está presente, es uniforme, tiene forma redonda y no presenta distorsiones.
- Asegúrese de que los componentes del láser y el dispositivo o dispositivos de emisión estén conectados correctamente.
- Ponga la señal de advertencia de láser en la puerta de la sala de tratamiento.
- Compruebe que todo el personal auxiliar presente en la sala de tratamiento lleve protección ocular adecuada para luz láser.

NOTA: Consulte el capítulo 6, «Seguridad y conformidad» junto con los manuales del dispositivo de emisión para conocer información importante acerca de la protección ocular para láser y los filtros de seguridad ocular.

PARA TRATAR A UN PACIENTE:

1. Reinicie el contador.
2. Establezca los parámetros de tratamiento.
3. Sitúe al paciente en la posición adecuada.
4. Si es necesario, seleccione una lente de contacto o examen adecuada para el tratamiento.
5. Seleccione el modo «Treat» (Tratamiento).
6. Proyecte el haz de iluminación redondo sobre la frente del paciente y ajuste la posición del haz de iluminación con los botones rotatorios de iluminación vertical.

7. Utilizando la lente condensadora y el control del haz de referencia vertical situado debajo de la unidad de cubierta, enfoque y posicione el haz de referencia en el centro del campo de iluminación ya proyectado sobre la frente del paciente.

8. Reposicione los haces de iluminación y referencia a través de la lente condensadora y de la pupila dilatada del paciente. Desplace la lente condensadora a lo largo de la trayectoria del haz de referencia hasta que este aparezca nítido y del diámetro deseado. Asegúrese de no tocar el borde de la pupila. Para un ojo emétrope con una lente condensadora de 20 D, el punto del láser debe tener un diámetro aproximado de 4 mm en el plano pupilar y de 350 µm en el plano retiniano para un tamaño de punto estándar de LIO, o de 1,4 mm para un tamaño de punto grande de LIO. Afine las posiciones del haz de referencia vertical y del haz de iluminación según sea necesario para el tratamiento.
9. Pise el pedal para emitir el haz de tratamiento. Suelte el pedal para detener la emisión de láser.

PARA CONCLUIR EL TRATAMIENTO DEL PACIENTE:

1. Seleccione el modo «Standby» (Espera).
2. Registre el número de exposiciones y cualquier otro parámetro de tratamiento.
3. Apague el láser y retire la llave.
4. Guarde el equipo de protección ocular.
5. Quite la señal de advertencia de láser de la puerta de la sala de tratamiento.
6. Desconecte el dispositivo o dispositivos de emisión.
7. Si el dispositivo de emisión es de un solo uso, deséchelo siguiendo el procedimiento adecuado. De lo contrario, inspeccione y limpie el dispositivo o dispositivos de emisión siguiendo las instrucciones del manual del dispositivo de emisión.
8. Si utilizó una lente de contacto, manipúlela según las instrucciones del fabricante.
9. Mantenga el tapón de protección en el conector de fibra óptica mientras no utilice el dispositivo de emisión.

Instrucciones para el modo BIO

1. Para utilizar el TruFocus LIO Premiere en modo de oftalmoscopio binocular indirecto (BIO), desplace la lente condensadora de 20 D a lo largo del trayecto del haz de iluminación hasta alcanzar el enfoque deseado en el área de visión indicada, descartando el haz de referencia o apagándolo.
Solución de problemas

Problemas generales

<table>
<thead>
<tr>
<th>Problema</th>
<th>Acciones del usuario</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se enciende la pantalla.</td>
<td>• Verifique que el interruptor de llave esté en la posición de encendido.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que los componentes estén conectados correctamente.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que el servicio eléctrico esté activado.</td>
</tr>
<tr>
<td></td>
<td>Si aún no se enciende la pantalla, póngase en contacto con un representante local del servicio técnico de IRIDEX.</td>
</tr>
<tr>
<td>El haz de referencia no es correcto o no está presente.</td>
<td>• Verifique que el dispositivo de emisión esté conectado correctamente.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que la consola esté en el modo «Treat» (Tratamiento).</td>
</tr>
<tr>
<td></td>
<td>• Gire por completo el control de haz de referencia en el sentido de las agujas del reloj.</td>
</tr>
<tr>
<td></td>
<td>• Asegúrese de que el conector de fibra óptica no esté dañado.</td>
</tr>
<tr>
<td></td>
<td>• Si es posible, conecte otro dispositivo de emisión de IRIDEX y ponga la consola en el modo «Treat» (Tratamiento).</td>
</tr>
<tr>
<td></td>
<td>Si aún no está visible el haz de referencia, póngase en contacto con un representante local del servicio técnico de IRIDEX.</td>
</tr>
<tr>
<td>No hay haz de tratamiento.</td>
<td>• Verifique que el interbloqueo remoto no se haya activado.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que el haz de referencia esté visible.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que el conmutador de fibra esté en la posición correcta para el sistema de láser y la longitud de onda que esté utilizando.</td>
</tr>
<tr>
<td></td>
<td>• Verifique que el filtro de seguridad ocular esté en la posición cerrada.</td>
</tr>
<tr>
<td></td>
<td>Si aún no hay haz de tratamiento, póngase en contacto con un representante local del servicio técnico de IRIDEX.</td>
</tr>
<tr>
<td>No hay luz de iluminación (solo LIO).</td>
<td>Consulte las instrucciones incluidas con la batería recargable y la base.</td>
</tr>
<tr>
<td>La luz de iluminación es demasiado tenue (solo LIO).</td>
<td>Consulte las instrucciones incluidas con la batería recargable y la base.</td>
</tr>
<tr>
<td>El haz de referencia es muy grande o aparece desenfocado en la retina del paciente (solo LIO).</td>
<td>Reajuste la distancia de trabajo entre el casco del LIO y la lente de examen. Si está enfocado, el haz de referencia debe aparecer definido con nitidez y con su diámetro mínimo.</td>
</tr>
<tr>
<td>Las lesiones de tratamiento son variables o intermitentes (solo LIO).</td>
<td>• Es posible que el LIO esté ligeramente desenfocado. Esto hace que se reduzca la densidad de potencia. Ajuste de nuevo la distancia de trabajo para conseguir el mínimo diámetro de punto.</td>
</tr>
<tr>
<td></td>
<td>• Un haz de láser mal centrado puede quedar recortado por la lente de examen o por el iris del paciente. Ajuste el haz de láser dentro del campo de iluminación.</td>
</tr>
<tr>
<td></td>
<td>• Es posible que los parámetros de tratamiento con láser se aproximen demasiado al umbral de respuesta tisular como para obtener un «resultado final» uniforme. Aumente la potencia del láser y/o la duración de la exposición, o bien seleccione una lente diferente.</td>
</tr>
</tbody>
</table>
4
Mantenimiento

PARA REALIZAR UN MANTENIMIENTO RUTINARIO:

• No acode ni doble el cable de fibra óptica.
• El cable de fibra óptica debe estar alejado de zonas de mucho tránsito cuando esté conectado a la consola.
• No golpee superficies duras con el conector de fibra óptica.
• Mantenga los componentes ópticos libres de huellas dactilares.
• Cuando no esté en uso, cubra el LIO a fin de mantenerlo libre de polvo y guarde todos los accesorios en envases adecuados para su almacenamiento.

Inspección del LIO

Inspeccione el LIO para comprobar que no presente suciedad o residuos ni esté dañado.

Limpieza del conector de fibra óptica

Antes de usarlo, inspeccione el conector de fibra óptica para comprobar que esté limpio; si es necesario, límpielo con un bastoncillo de algodón humedecido con acetona. Inspeccione el conector de fibra óptica con 100 aumentos como mínimo a fin de verificar que está limpio. Inspeccione el cordón para comprobar que no esté contaminado antes de volver a instalarlo en el conector de fibra óptica.

Limpieza de las superficies externas

Limpie las superficies externas del LIO (salvo los componentes ópticos) con un paño que no suelte fibras, humedecido en una solución de alcohol isopropílico (AIP) en una proporción de 70/30.

Limpieza de los componentes ópticos

PARA LIMPIAR LOS COMPONENTES ÓPTICOS:

1. Aplique 2-3 gotas de acetona muy concentrada a un bastoncillo de algodón.
2. Limpie con suavidad los componentes ópticos en una misma dirección con el bastoncillo para retirar el polvo y la suciedad.
3. Repita la operación si es necesario con un bastoncillo nuevo hasta eliminar todo el polvo y la suciedad de las superficies ópticas.
Sustitución y limpieza de la batería recargable montada en el casco

Consulte las instrucciones incluidas con la batería recargable.

Carga de la batería recargable montada en el casco

Hay dos cargadores de batería disponibles para su uso con el LIO:

1. Una base de pared con transformador que se conecta a una toma eléctrica:

2. Transformador con conexión a toma eléctrica:
La batería del LIO puede cargarse con cualquiera de los dos cargadores. Consulte las instrucciones de Heine sobre uso seguro que se incluyen con cada uno de los cargadores.

Base de pared para recargar la batería:

La base de pared para recargar la batería debe instalarse en una pared en donde se vaya a utilizar el sistema. Emplee el hardware y las instrucciones que se incluyen con la base de carga. Es un lugar seguro en el que guardar el LIO y alojar la batería de repuesto. Las baterías se cargan automáticamente al colocarlas en una base de carga activa. La base de carga de pared cuenta con las siguientes funciones:

- La batería puede cargarse en cualquiera de las dos bases de carga.
- La iluminación del LIO se apaga automáticamente cuando la batería queda alojada en una base de carga activa.
- Durante el proceso de carga, los LED parpadearán de forma secuencial y permanecerán encendidos cuando esté utilizándose el sistema.
- Cuando la batería esté totalmente cargada, se iluminarán los 5 LED. A medida que vaya bajando el nivel de carga, se irán apagando los LED. Cuando se apaguen todos los LED, significa que la batería está sin carga.
- Recargue la batería en cuanto el LED naranja empiece a parpadear.

Transformador con conexión a toma eléctrica:

La batería se puede cargar conectándola directamente al transformador y enchufando este a una toma de CA adecuada.

Para más información, consulte las instrucciones de Heine que se incluyen con la unidad.

Sustitución de la lámpara de iluminación halógena o LED

Consulte las instrucciones de Heine sobre cómo instalar o cambiar la lámpara de iluminación halógena o LED. Puede obtener lámparas de repuesto a través de IRIDEX, de su distribuidor IRIDEX o directamente de Heine.
5
Servicio técnico

El LIO no contiene elementos que pueda reparar el usuario. Todos los trabajos de mantenimiento o reparación del LIO debe llevarlos a cabo el personal de mantenimiento cualificado de IRIDEX. Comuníquese con IRIDEX o con su distribuidor para obtener información sobre mantenimiento o reparación del producto.
6
Seguridad y conformidad

Para garantizar un funcionamiento seguro y prevenir riesgos y una exposición no deseada a los haces de láser, lea y siga estas instrucciones:

- Antes de usar el dispositivo, lea y respete en todo momento las precauciones de seguridad descritas en los manuales del usuario para evitar la exposición (directa o por reflexión difusa) a la energía de láser, salvo que este se aplique con fines terapéuticos.

- Este dispositivo está indicado para uso exclusivo por parte de un médico u otro profesional sanitario cualificado. La adecuación del equipo y las técnicas de tratamiento seleccionadas para uso clínico son responsabilidad exclusiva del operador.

- No utilice ningún dispositivo si tiene dudas sobre su correcto funcionamiento.

- El reflejo de la luz láser de superficies especulares puede dañar los ojos del operador, del paciente o de otras personas. Cualquier espejo u objeto metálico que refleje el rayo láser puede causar reflejo. Asegúrese de eliminar del entorno del láser cualquier elemento que pueda causar reflejo. Utilice instrumentos no reflectantes siempre que sea posible. Tenga cuidado de no dirigir el haz de láser accidentalmente hacia otros objetos.

PRECAUCIÓN: Cualquier cambio o modificación no aprobados expresamente por la persona responsable del cumplimiento de la normativa podría anular la autorización del usuario para utilizar el equipo.

Protección del facultativo

Los filtros de seguridad ocular protegen al facultativo contra la luz de láser de tratamiento reflejada. Hay filtros de seguridad ocular integrados instalados permanentemente en cada adaptador de lámpara de hendidura (SLA) y oftalmoscopio indirecto para láser (LIO) compatibles. Para la endofotocoagulación o para uso con el adaptador para microscopio quirúrgico (OMA), es necesario instalar un módulo de filtro de seguridad ocular independiente en cada una de las líneas de visión del microscopio quirúrgico. Todos los filtros de seguridad ocular tienen una densidad óptica (DO) adecuada para la longitud de onda, suficiente para permitir una visualización prolongada de la luz láser difusa dentro de los límites de la clase I.

Lleve siempre protección ocular adecuada para láser cuando esté realizando u observando tratamientos de láser sin ayuda de instrumentos oculares. Consulte el manual del usuario de la consola láser para obtener información sobre la DO mínima de la protección ocular para láser; es específica para cada longitud de onda de la consola del láser y la potencia de salida máxima.

Protección de todo el personal de la sala de tratamiento

El responsable de seguridad para láser debe determinar la necesidad de llevar protección ocular de seguridad basándose en el valor de exposición máxima permisible (MPE, Maximum Permissible Exposure), área nominal de peligro ocular (NOHA, Nominal Ocular Hazard Area) y distancia nominal de peligro ocular (NOHD, Nominal Ocular Hazard Distance) para cada uno de los dispositivos de emisión utilizados con el sistema láser, así como en la configuración de la sala de tratamiento. Estos parámetros figuran detallados para cada consola láser IRIDEX compatible en el manual del usuario correspondiente. Para más información, consulte las normas ANSI Z136.1, ANSI Z136.3 o IEC 60825-1.
Conformidad de seguridad

Cumple con las normas de rendimiento de la FDA de los Estados Unidos para productos de láser excepto para las desviaciones de acuerdo con el aviso sobre láser n.° 50, con fecha del 24 de junio de 2007.

El LIO TruFocus Premiere cumple con la directiva europea 93/42/CEE y sus posteriores modificaciones.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Función</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtro de seguridad ocular</td>
<td>El filtro de seguridad ocular garantiza que toda la radiación láser que llega hasta el facultativo y cualquier otro observador se encuentre por debajo de los límites de la clase I.</td>
</tr>
<tr>
<td>Indicador de emisión del láser</td>
<td>La iluminación del indicador verde «Treat» (Tratamiento) del láser constituye una advertencia visual de que puede estar emitiéndose radiación láser.</td>
</tr>
<tr>
<td>Interbloqueo de seguridad</td>
<td>Ni la carcasa protectora del dispositivo de emisión ni el conector de fibra óptica del láser pueden abrirse sin la ayuda de herramientas especiales. El dispositivo de emisión también tiene un interbloqueo de seguridad en el puerto de fibra óptica del láser.</td>
</tr>
</tbody>
</table>

Fototoxicidad de la iluminación

Dado que una exposición prolongada a una luz intensa puede dañar la retina, el dispositivo no debe utilizarse para exámenes oculares durante un periodo innecesariamente largo, y el ajuste del brillo no debe superar el necesario para ver claramente las estructuras que se deseen estudiar. Este dispositivo debe utilizarse con filtros que eliminan la radiación UV (<400 nm) y, en la medida de lo posible, con filtros que eliminan la luz azul de longitud de onda corta (<420 nm). La dosis de exposición retiniana a riesgos fotoquímicos es el producto de la radiancia por el tiempo de exposición. Si el valor de la radiancia se reduce a la mitad, se necesitará el doble de tiempo para alcanzar el límite de exposición máximo. Si bien no se ha identificado ningún riesgo de radiación cóptica aguda por el uso de oftalmoscopios directos o indirectos, se recomienda limitar la intensidad de la luz dirigida al ojo del paciente al nivel mínimo necesario para el diagnóstico. Los niños pequeños y las personas que sufran de afaquia o enfermedades oculares corren más riesgo. Dicho riesgo será aún mayor si durante las 24 horas anteriores la persona examinada ha sufrido alguna exposición con el mismo instrumento o con cualquier otro instrumento oftalmológico utilizando una fuente de luz visible. Esta circunstancia debe tenerse particularmente en cuenta si el ojo se ha expuesto a una fotografía retiniana.

El LIO IRIDEX basado en el oftalmoscopio OMEGA® 500 está clasificado como instrumento de grupo 2 según la norma UNE-EN ISO 15004-2:2007. Esta clasificación se determinó usando el dispositivo en conjunción con la lupa de oftalmoscopia HEINE A.R. 16 D/Ø 54 mm.

Precaución: la luz que emite este instrumento puede ser peligrosa. Cuanto más dure la exposición, mayor será el riesgo de daños oculares. La exposición a la luz de este instrumento utilizado a su máxima intensidad no deberá superar los 21 minutos con la luz LED ni los 15 minutos con la luz XHL de 5 W.
Etiquetas

Etiqueta de apertura del láser

Etiquetas del producto
<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ángulo</td>
</tr>
<tr>
<td></td>
<td>Sonda de aspiración</td>
</tr>
<tr>
<td></td>
<td>Señal acústica</td>
</tr>
<tr>
<td></td>
<td>No utilizar si el paquete está dañado</td>
</tr>
<tr>
<td></td>
<td>Parada de emergencia</td>
</tr>
<tr>
<td></td>
<td>Duración</td>
</tr>
<tr>
<td></td>
<td>Esterilizado con óxido de etileno</td>
</tr>
<tr>
<td></td>
<td>Fecha de caducidad</td>
</tr>
<tr>
<td></td>
<td>Entrada de pedal</td>
</tr>
<tr>
<td></td>
<td>Salida de pedal</td>
</tr>
<tr>
<td></td>
<td>Calibre</td>
</tr>
<tr>
<td></td>
<td>Intervalo</td>
</tr>
<tr>
<td></td>
<td>Apertura de láser en el extremo de la fibra</td>
</tr>
<tr>
<td></td>
<td>Apagado</td>
</tr>
<tr>
<td></td>
<td>Encendido</td>
</tr>
<tr>
<td></td>
<td>Potencia</td>
</tr>
<tr>
<td></td>
<td>Reinicio del contador de impulsos</td>
</tr>
<tr>
<td></td>
<td>Control remoto</td>
</tr>
<tr>
<td></td>
<td>Número de serie</td>
</tr>
<tr>
<td></td>
<td>No reutilizar</td>
</tr>
<tr>
<td></td>
<td>Directiva sobre residuos de aparatos eléctricos y electrónicos (RAEE)</td>
</tr>
<tr>
<td></td>
<td>Segmento y conformidad</td>
</tr>
<tr>
<td>Límite de temperatura</td>
<td>IPX4</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>Consultar manual/folleto de instrucciones</td>
<td></td>
</tr>
<tr>
<td>Número de impulsos (grupo)</td>
<td></td>
</tr>
<tr>
<td>Incremento de potencia</td>
<td></td>
</tr>
<tr>
<td>Bus serie universal (USB)</td>
<td></td>
</tr>
<tr>
<td>Preparando láser</td>
<td></td>
</tr>
<tr>
<td>Brillo del sistema</td>
<td></td>
</tr>
<tr>
<td>Advertencia: reemplazar con fusibles tal como se indica</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertencia sobre radiación óptica</td>
<td></td>
</tr>
</tbody>
</table>
Especificaciones del TruFocus LIO Premiere

<table>
<thead>
<tr>
<th>Especificación</th>
<th>Punto estándar</th>
<th>Punto grande</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibilidad del láser IRIDEX</td>
<td>OcuLight GL</td>
<td>OcuLight SLx</td>
</tr>
<tr>
<td></td>
<td>OcuLight GLx</td>
<td>IQ 810</td>
</tr>
<tr>
<td></td>
<td>OcuLight TX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OcuLight SLx</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OcuLight OR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OcuLight SL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IQ 532</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IQ 577</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IQ 810</td>
<td></td>
</tr>
<tr>
<td>Compatibilidad del firmware del láser (si corresponde)</td>
<td>OcuLight GL versión 3.2 y posteriores</td>
<td>OcuLight SLx versión 4.1 y posteriores</td>
</tr>
<tr>
<td></td>
<td>OcuLight GLx versión 3.3 y posteriores</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OcuLight SLx versión 4.1 y posteriores</td>
<td></td>
</tr>
<tr>
<td>Tamaño de punto de láser en la retina con lentes de 20 D</td>
<td>350 µm*</td>
<td>1400 µm*</td>
</tr>
<tr>
<td>Filtro ocular</td>
<td>532 nm y 810 nm</td>
<td>810 nm</td>
</tr>
<tr>
<td></td>
<td>532 nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>810 nm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>577 nm</td>
<td></td>
</tr>
</tbody>
</table>

*Puede variar con la potencia de refracción.

Condiciones ambientales de funcionamiento y almacenamiento

Lugar de funcionamiento

<table>
<thead>
<tr>
<th>Límites de temperatura:</th>
<th>De 10 °C (50 °F) a 35 °C (95 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límites de humedad</td>
<td>Del 20 % al 80 % de humedad relativa, sin condensación</td>
</tr>
</tbody>
</table>

Lugar de almacenamiento

<table>
<thead>
<tr>
<th>Límites de temperatura:</th>
<th>De -20 °C (-4 °F) a 60 °C (140 °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límites de humedad</td>
<td>Del 20 % al 80 % de humedad relativa, sin condensación</td>
</tr>
</tbody>
</table>
Información de seguridad sobre compatibilidad electromagnética

El sistema de láser (consola y accesorios) requiere precauciones especiales en lo referente a interferencias electromagnéticas, y debe instalarse y ponerse en funcionamiento de acuerdo con la información sobre compatibilidad electromagnética contenida en este manual. Los equipos de comunicaciones por RF móviles y portátiles pueden afectar a este sistema.

Este sistema de láser se ha sometido a pruebas y se ha determinado que cumple los límites establecidos para dispositivos médicos en la norma IEC 60601-1-2 de acuerdo con las tablas de esta sección. Estos límites se han diseñado para proporcionar una protección razonable contra interferencias perjudiciales en una instalación típica para uso médico.

PRECAUCIÓN: Cualquier cambio o modificación realizados en el sistema de láser que no hayan sido aprobados expresamente por la persona responsable del cumplimiento de la normativa podría anular la autorización del usuario para utilizar el equipo y aumentar el nivel de emisiones o bien menoscabar la inmunidad del sistema de láser.

Requisitos de compatibilidad electromagnética para la consola y los accesorios

<table>
<thead>
<tr>
<th>Guía y declaración del fabricante: Emisiones electromagnéticas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Este sistema de láser (consola y accesorios) está indicado para su uso en el entorno electromagnético especificado a continuación. El cliente o el usuario del sistema de láser debe asegurarse de que se utilice en dicho entorno.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prueba de emisiones</th>
<th>Conformidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones de RF CISPR 11</td>
<td>Grupo 1</td>
</tr>
<tr>
<td>Emisiones de RF CISPR 11</td>
<td>Clase A</td>
</tr>
<tr>
<td>Emisiones de armónicas IEC 61000-3-2</td>
<td>Clase A</td>
</tr>
<tr>
<td>Fluctuaciones de tensión/ emisiones de parpadeo (flicker)</td>
<td>Conforme</td>
</tr>
</tbody>
</table>

El sistema de láser utiliza energía de RF solo para su funcionamiento interno. Por tanto, sus emisiones de RF son muy bajas y es improbable que causen interferencias en los equipos electrónicos cercanos.

El sistema de láser es apto para su uso en todo tipo de establecimientos, excepto los de tipo residencial y los directamente conectados a la red pública de suministro eléctrico de baja tensión que abastece a los edificios utilizados para fines residenciales.
Guía y declaración del fabricante: Inmunidad

Este sistema de láser (consola y accesorios) está indicado para su uso en el entorno electromagnético especificado a continuación. El cliente o el usuario del sistema de láser debe asegurarse de que se utilice en dicho entorno.

<table>
<thead>
<tr>
<th>Prueba de inmunidad</th>
<th>Nivel de prueba IEC 60601</th>
<th>Nivel de conformidad</th>
<th>Entorno electromagnético: guía</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descarga electrostática (ESD) IEC 61000-4-2</td>
<td>±6 kV por contacto ±8 kV por aire</td>
<td>±6 kV por contacto ±8 kV por aire</td>
<td>Los suelos deben ser de madera, hormigón o baldosas de cerámica. Si los suelos están revestidos de material sintético, la humedad relativa debe ser como mínimo del 30 %.</td>
</tr>
<tr>
<td>Corrientes eléctricas transitorias rápidas/ráfagas IEC 61000-4-4</td>
<td>±2 kV para líneas de suministro eléctrico ±1 kV para líneas de entrada/salida</td>
<td>±2 kV para líneas de suministro eléctrico No aplicable</td>
<td>La calidad de la corriente de la red principal debe equivaler a la de un entorno comercial u hospitalario típico.</td>
</tr>
<tr>
<td>Sobretensión IEC 61000-4-5</td>
<td>±1 kV en modo diferencial ±2 kV en modo común</td>
<td>±1 kV en modo diferencial ±2 kV en modo común</td>
<td>La calidad de la corriente de la red principal debe equivaler a la de un entorno comercial u hospitalario típico.</td>
</tr>
<tr>
<td>Caídas, interrupciones breves y variaciones de tensión en las líneas de entrada de suministro eléctrico IEC 61000-4-11</td>
<td><5 % U_T (caída >95 % en U_T) durante 0,5 ciclos 40% U_T (caída >60% en U_T) durante 5 ciclos 70 % U_T (caída >30 % en U_T) durante 25 ciclos <5 % U_T (caída >95 % en U_T) durante 5 ciclos</td>
<td><5 % U_T (caída >95 % en U_T) durante 0,5 ciclos 40% U_T (caída >60% en U_T) durante 5 ciclos 70 % U_T (caída >30 % en U_T) durante 25 ciclos <5 % U_T (caída >95 % en U_T) durante 5 ciclos</td>
<td>La calidad de la corriente de la red principal debe equivaler a la de un entorno comercial u hospitalario típico. Si el usuario o el sistema de láser requiere un funcionamiento continuo durante interrupciones del suministro eléctrico, se recomienda accionar el sistema de láser desde una fuente de alimentación ininterrumpida o una batería.</td>
</tr>
<tr>
<td>Campo magnético (50/60 Hz) IEC 61000-4-8</td>
<td>3 A/m</td>
<td>3 A/m</td>
<td>Los campos magnéticos de frecuencia eléctrica deben tener magnitudes características de un lugar típico de un entorno comercial u hospitalario típico.</td>
</tr>
</tbody>
</table>

NOTA: U_T representa la tensión de CA de la red previa a la aplicación del nivel de prueba.
El dispositivo está diseñado para ser utilizado en un entorno electromagnético en el que las interferencias por RF estén controladas. El cliente o el usuario del dispositivo pueden ayudar a prevenir las interferencias electromagnéticas manteniendo una distancia mínima entre los equipos de comunicaciones por RF móviles y portátiles (transmisores) y el dispositivo, que se recomienda a continuación, de acuerdo con la potencia máxima de salida del equipo de comunicaciones.

<table>
<thead>
<tr>
<th>Potencia nominal de salida máxima del transmisor (W)</th>
<th>Distancia de separación según la frecuencia del transmisor (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>De 150 kHz a 80 MHz</td>
</tr>
<tr>
<td></td>
<td>(d = 1,2 \times \sqrt{P})</td>
</tr>
<tr>
<td>0,01</td>
<td>0,12</td>
</tr>
<tr>
<td>0,1</td>
<td>0,37</td>
</tr>
<tr>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>10</td>
<td>3,7</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

Para los transmisores cuya potencia nominal máxima de salida no esté indicada arriba, es posible calcular aproximadamente la distancia de separación recomendada «d» en metros (m) utilizando la ecuación aplicable a la frecuencia del transmisor, donde «P» es la potencia nominal máxima de salida del transmisor en vatios (W) según el fabricante del transmisor.

NOTA 1: A 80 MHz y 800 MHz, se aplica la distancia de separación para el intervalo de frecuencia más alto.

NOTA 2: Es posible que estas directrices no sean aplicables a todas las situaciones. La propagación electromagnética se ve afectada por la absorción de las ondas debido a la presencia de estructuras, objetos y personas.