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Purpose:	
To	study	aqueous	outflow	system	responses	
to	a	transcleral µP	laser	(IridexTM)	in	an	ex	
vivo	system	using	visually	guided	positioning	
&	real	time	observation	of	tissue	responses.		

Background:	
Physical	tissue	responses	are	highly	relevant	
because	outflow	system	tissue	configuration	
determines	aqueous	flow	and	IOP,	parameters	
that	become	abnormal	in	glaucoma.	

Conclusions:	
A	transcleral 810	nm	µP	laser	can	induce	CM	
shortening,	SS	rotation,	TM	movement	and	SC	
∆s,	types	of	outflow	pathway	anatomic	
changes	thought	to	improve	aqueous	flow	
that	in	turn	reduces	IOP.		This	pilot	effort	
suggests	that	systematic	studies	can	
determine	optimal	parameters	necessary	for	
providing	a	non-incisional	glaucoma	surgical	
(NIGS)	procedure	to	alter	aqueous	flow	&	IOP.

Discussion:	
Transcleral	µP	laser	induces	contraction	of	the	
CM,	a	well-characterized	muscle	response	to	
uP lasers.1,	2 CM	shortening	causes	posterior	
and	inward	movement	of	the	SS	changing	TM	
and	aqueous	outflow	pathway	shape.			
Currently	used	clinical	parameters	are	
sufficient	to	induce	outflow	system	pathway	
∆s	generally	associated	with	improved	
aqueous	flow.3 The	above	described	system	
permits	systematic	assessment	of	probe	
location	posterior	to	the	limbus,	power,	
duration	and	focal	depth,	all	parameters	
subject	to	optimization.	

Materials	and	Methods:	
Microscope,	video	system,	micrometer,	1	mm	
thick	radial	limbal	segments	from	4	quadrants	
(Q)	of	primate	(M.	fasc.),	cornea,	sclera,	ciliary	
body	pinned	to	paraffin	base	in	Petrie	dish,	
micromanipulator,	Single	pulse	of	810	nm	µP	
laser,	Duty	Cycle	31.3%.	Paired	parameters	of	
stepwise	power;	range:	500-3000	mW	and	
stepwise	duration;	range:	125-3,000	msec.	
Resultant	energy	level	range:		0.08-2.35	
joules.	(Clinically	~	1.59	joules	are	applied	per	
single	location).	Video	capture	during	pulse.		
Motion	quantitated	from	still	frames	with	
ImageJ.	

Results:
See	Videos:	www.youtube.com/user/ibmurray
Ciliary	muscle	(CM)	contraction	&	relaxation	
was	visible	at	≥	0.08	J	in	the	IN	&	SN	Q	but	at	
≥0.16	J	in	the	IT	and	ST	Q.				CM	contraction	
caused	the	CM	facing	the	AC	to	transiently	
move	inward	&	posteriorly	at	≥0.75	Joules	in	
all	Q,	Fig.	A.		The	scleral	spur	(SS),	and	
trabecular	meshwork	(TM)	moved	posteriorly	
with	a	change	(∆)	in	Schlemm’s	canal	shape.		
After	contraction,	the	CM	relaxed/recovered	
to	near	its	pre	µP	configuration	at	low	
energies	with	a	progressive	reduction	in	the	
recovery	response	as	energy	increased,	Fig.	B.			
E.g.	in	the	SN	Q,	CM	bundles	turned	white	at	
2.35	joules	with	a	lack	of	recoil/relaxation	
resulting	in	a	persistent	∆	in	CB,	SS	&	TM	
configuration,	Fig.	C.			
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